top of page

PUBLICATIONS

​

1.           L. Lutz; W. Dachraoui; A. Demortiere; L. R. Johnson; P. G. Bruce; A. Grimaud; J. M. Tarascon, Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na-O2 Battery Using Liquid-Electrochemical Transmission Electron Microscopy. Nano Letters 2018, 18 (2), 1280-1289.

​

2.           Y. Chen; Z. P. Jovanov; X. Gao; J. Liu; C. Holc; L. R. Johnson; P. G. Bruce, High capacity surface route discharge at the potassium-O 2 electrode. Journal of Electroanalytical Chemistry 2018, 819, 542-546.

​

3.           Y. Chen; X. Gao; L. R. Johnson; P. G. Bruce, Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nature Communications 2018, 9 (1).

​

4.           X. Zhang; L. Guo; L. Gan; Y. Zhang; J. Wang; L. R. Johnson; P. G. Bruce; Z. Peng, LiO2: Cryosynthesis and chemical/electrochemical reactivities. The Journal of Physical Chemistry Letters 2017, 8 (10), 2334-2338.

​

5.           C. Pozo-Gonzalo; L. R. Johnson; E. Jónsson; C. Holc; R. Kerr; D. R. MacFarlane; P. G. Bruce; P. C. Howlett; M. Forsyth, Understanding of the Electrogenerated Bulk Electrolyte Species in Sodium-Containing Ionic Liquid Electrolytes During the Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2017, 121 (42), 23307-23316.

​

6.           L. Lutz; D. A. D. Corte; Y. Chen; D. Batuk; L. R. Johnson; A. Abakumov; L. Yate; E. Azaceta; P. G. Bruce; J.-M. Tarascon; A. Grimaud, The Role of the Electrode Surface in Na-Air Batteries: Insights in Electrochemical Product Formation and Chemical Growth of NaO2. Advanced Energy Materials 2017, 1701581.

​

7.           L. Lutz; D. Alves Dalla Corte; M. Tang; E. Salager; M. Deschamps; A. Grimaud; L. Johnson; P. G. Bruce; J.-M. Tarascon, Role of Electrolyte Anions in the Na–O2 Battery: Implications for NaO2 Solvation and the Stability of the Sodium Solid Electrolyte Interphase in Glyme Ethers. Chemistry of Materials 2017, 29 (14), 6066-6075.

​

8.           X. Gao; Z. P. Jovanov; Y. Chen; L. R. Johnson; P. G. Bruce, Phenol-catalyzed discharge in the aprotic lithium-oxygen battery. Angewandte Chemie International Edition 2017, 56 (23), 6539-6543.

​

9.           X. Gao; Y. Chen; L. R. Johnson; Z. P. Jovanov; P. G. Bruce, A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nature Energy 2017, 2, 17118.

​

10.        L. Lutz; W. Yin; A. Grimaud; D. Alves Dalla Corte; M. Tang; L. Johnson; E. Azaceta; V. Sarou-Kanian; A. J. Naylor; S. Hamad; J. A. Anta; E. Salager; R. Tena-Zaera; P. G. Bruce; J. M. Tarascon, High capacity Na–O2 batteries: Key Parameters for solution-mediated discharge. The Journal of Physical Chemistry C 2016, 120 (36), 20068-20076.

​

11.        X. Gao; Y. Chen; L. Johnson; P. G. Bruce, Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nature Materials 2016, 15 (8), 882-8.

​

12.        K. H. Xue; E. McTurk; L. Johnson; P. G. Bruce; A. A. Franco, A comprehensive model for non-aqueous lithium air batteries involving different reaction mechanisms. Journal of the Electrochemical Society 2015, 162 (4), A614-A621.

13.        C. M. Li; O. Fontaine; S. A. Freunberger; L. Johnson; S. Grugeon; S. Laruelle; P. G. Bruce; M. Armand, Aprotic Li-O2 battery: Influence of complexing agents on oxygen reduction in an aprotic solvent. Journal of Physical Chemistry C 2014, 118 (7), 3393-3401.

14.        L. Johnson; C. M. Li; Z. Liu; Y. H. Chen; S. A. Freunberger; P. C. Ashok; B. B. Praveen; K. Dholakia; J. M. Tarascon; P. G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nature Chemistry 2014, 6 (12), 1091-1099.

15.        F. Barde; Y. H. Chen; L. Johnson; S. Schaltin; J. Fransaer; P. G. Bruce, Sulfone-based electrolytes for nonaqueous Li-O2 batteries. Journal of Physical Chemistry C 2014, 118 (33), 18892-18898.

​

16.        L. Johnson; D. A. Walsh, Tip generation-substrate collection-tip collection mode scanning electrochemical microscopy of oxygen reduction electrocatalysts. Journal of Electroanalytical Chemistry 2012, 682, 45-52.

 

17.        L. Johnson; A. Ejigu; P. Licence; D. A. Walsh, Hydrogen oxidation and oxygen reduction at platinum in protic ionic liquids. Journal of Physical Chemistry C 2012, 116 (34), 18048-18056.

​

18.        A. Ejigu; L. Johnson; P. Licence; D. A. Walsh, Electrocatalytic oxidation of methanol and carbon monoxide at platinum in protic ionic liquids. Electrochemistry Communications 2012, 23, 122-124.

​

19.        L. Johnson; D. A. Walsh, Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material. Journal of Materials Chemistry 2011, 21 (21), 7555-7558.

​

20.        L. Johnson; W. Thielemans; D. A. Walsh, Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent. Green Chemistry 2011, 13 (7), 1686-1693.

​

21.        L. Johnson; A. Niaz; A. Boatwright; K. T. Voisey; D. A. Walsh, Scanning electrochemical microscopy at thermal sprayed anti-corrosion coatings: Effect of thermal spraying on heterogeneous electron transfer kinetics. Journal of Electroanalytical Chemistry 2011, 657 (1-2), 46-53.

​

22.        L. Johnson; W. Thielemans; D. A. Walsh, Nanocomposite oxygen reduction electrocatalysts formed using bioderived reducing agents. Journal of Materials Chemistry 2010, 20 (9), 1737-1743.

 

23.        K. Benaissi; L. Johnson; D. A. Walsh; W. Thielemans, Synthesis of platinum nanoparticles using cellulosic reducing agents. Green Chemistry 2010, 12 (2), 220-222.

​

24.        K. Bates; L. Johnson; R. A. Henderson, Mechanism of the reactions of synthetic Fe-S-based clusters with PhCOCl: Parallel pathways involving free and coordinated thiolate as nucleophiles. Inorganic Chemistry 2006, 45 (23), 9423-9433.

bottom of page